Thanks, bodhimind, for the link. I searched for you quote and found a published research paper with the quote in it. It was in,
Histamine in diabetes: Is it time to reconsider? in Pharmacological Research, Volume 111, September 2016, Pages 316-324
Abstract
The first studies of histamine and diabetes date back to the 1950s. Since that time the involvement of histamine in diabetes was related to its well known vasoactive properties and permeability leakage effects. In particular, the first evidence for a correlation between histamine and diabetes arose in 1989 when an increase in plasma and leucocyte histamine content was observed. Limited independent evidence followed in the subsequent two decades, focusing on both histamine glyceamic control and macro- and microvascular complications of diabetes. However, recent observations have sparked the question whether it is time to reconsider the functional contribution of histamine in diabetes. We reveal an interesting upsurge in the field which provides scope for new insights into the role of histamine in diabetes.
It looks like there is a clear connection between histamine and diabetes, and the research supporting this connection date back to the 1950s.
More interesting data comes from your first link,
Antidiabetic properties of the histamine H3 receptor protean agonist proxyfan, Endocrinology. 2011 Mar;152(3):828-35. doi: 10.1210/en.2010-0757. Epub 2011 Jan 14.
Abstract
Proxyfan is a histamine H3 receptor protean agonist that can produce a spectrum of pharmacological effects including agonist, inverse agonist, and antagonist. We have discovered that proxyfan (10 mg/kg orally) significantly improved glucose excursion after an ip glucose tolerance test in either lean or high-fat/cholesterol diet-induced obese mice. It also reduced plasma glucose levels comparable to that of metformin (300 mg/kg orally) in a nongenetic type 2 diabetes mouse model. The dose-dependent decrease in glucose excursion correlated with inhibition of ex vivo H3 receptor binding in the cerebral cortex. In addition, glucose levels were significantly reduced compared with vehicle-treated mice after intracerebroventricular administration of proxyfan, suggesting the involvement of central H3 receptors. Proxyfan-induced reduction of glucose excursion was not observed in the H3 receptor knockout mice, suggesting that proxyfan mediates this effect through H3 receptors. Proxyfan reduced glucose excursion by significantly increasing plasma insulin levels in a glucose-independent manner. However, no difference in insulin sensitivity was observed in proxyfan-treated mice. The H1 receptor antagonist chlorpheniramine and the H2 receptor antagonist zolantidine had modest effects on glucose excursion, and neither inhibited the glucose excursion reduced by proxyfan. The H3 receptor antagonist/inverse agonist, thioperamide, had weaker effects on glucose excursion compared with proxyfan, whereas the H3 receptor agonist imetit did not affect glucose excursion. In conclusion, these findings demonstrate, for the first time, that manipulation of central histamine H3 receptor by proxyfan can significantly improve glucose excursion by increasing plasma insulin levels via a glucose-independent mechanism.
The conclusion is most interesting. I will have to ask my dr about
Proxyfan.
Proxyfan is a histamine H3 receptor ligand which is a "protean agonist", producing different effects ranging from full agonist, to antagonist, to inverse agonist in different tissues, depending on the level of constitutive activity of the histamine H3 receptor. This gives it a complex activity profile in vivo which has proven useful for scientific research.
And, another interesting article,
The H3 receptor protean agonist proxyfan enhances the expression of fear memory in the rat. Neuropharmacology, 2005 Feb;48(2):246-51.
Abstract
Consolidation of fear memory requires neural changes to occur in the basolateral amygdala (BLA), including modulation of histaminergic neurotransmission. We previously demonstrated that local blockade or activation of histamine H3 receptors in the BLA impaired or ameliorated, respectively, retention of fear memory. The histamine H3 receptor is a G-protein-coupled receptor (GPCR) displaying high constitutive activity that regulates histamine neurons in the brain. Proxyfan is a high-affinity histamine H3 receptor protean agonist exhibiting the full spectrum of pharmacological activities, from full agonist to full inverse agonist depending on the competition between constitutively active and quiescent H3 receptors in a given tissue or brain region. Therefore, protean agonists are powerful tools to investigate receptor conformation and may be useful in designing specific compounds selective for the various receptor conformations. In the present study we examined the effect of post-training, systemic or intra-BLA injections of proxyfan on contextual fear memory. Rats receiving intra-BLA, bilateral injections of 1.66 ng proxyfan immediately after fear conditioning showed stronger memory for the context-footshock association, as demonstrated by longer freezing assessed at retention performed 72 hr later compared to controls. Comparable results were obtained when doses as low as 0.04 mg/kg of proxyfan were injected systemically. Hence, our results suggest that proxyfan behaves as an H3 receptor agonist with a low level of constitutive activity of the H3 receptor in the rat BLA.