The more I learn about the health benefits of Gut Bacteria, the more I wonder if the antibacterial craze of western civilization is the cause of various diseases, such as diabetes.
Water chlorination
Water chlorination is the process of adding chlorine (Cl2) or hypochlorite to water. This method is used to kill certain bacteria and other microbes in tap water as chlorine is highly toxic. In particular, chlorination is used to prevent the spread of waterborne diseases such as cholera, dysentery, jaundice, typhoid etc.
History
In a paper published in 1894, it was formally proposed to add chloride to water to render it “germ-free.” Two other investigators confirmed this proposal and published it in many other papers in 1895.[1] Early attempts at implementing water chlorination at a water treatment plant were made in 1893 in Hamburg, Germany, and in 1897 the town of Maidstone, England was the first to have entire water supply treated with chlorine.[2]
Permanent water chlorination began in 1905, when a faulty slow sand filter and a contaminated water supply led to a serious typhoid fever epidemic in Lincoln, England.[3] Dr. Alexander Cruickshank Houston used chlorination of the water to stem the epidemic. His installation fed a concentrated solution of chloride of lime to the water being treated. The chlorination of the water supply helped stop the epidemic and as a precaution, the chlorination was continued until 1911 when a new water supply was instituted.[4]
The first continuous use of chlorine in the United States for disinfection took place in 1908 at Boonton Reservoir (on the Rockaway River), which served as the supply for Jersey City, New Jersey.[5] Chlorination was achieved by controlled additions of dilute solutions of chloride of lime (calcium hypochlorite) at doses of 0.2 to 0.35 ppm. The treatment process was conceived by Dr. John L. Leal, and the chlorination plant was designed by George Warren Fuller.[6] Over the next few years, chlorine disinfection using chloride of lime were rapidly installed in drinking water systems around the world.
Biochemistry
As a halogen, chlorine is a highly efficient disinfectant, and is added to public water supplies to kill disease-causing pathogens, such as bacteria, viruses, and protozoans, that commonly grow in water supply reservoirs, on the walls of water mains and in storage tanks.[12] The microscopic agents of many diseases such as cholera, typhoid fever, and dysentery killed countless people annually before disinfection methods were employed routinely.[
Drawbacks to water chlorination
Disinfection by chlorination can be problematic, in some circumstances. Chlorine can react with naturally occurring organic compounds found in the water supply to produce compounds known as disinfection byproducts (DBPs). The most common DBPs are trihalomethanes (THMs) and haloacetic acids (HAAs). Trihalomethanes are the main disinfectant by-products created from chlorination with two different types, bromoform and dibromochloromethane, which are mainly responsible for health hazards. Their effects depend strictly on the duration of their exposure to the chemicals and the amount ingested into the body. In high doses, bromoform mainly slows down regular brain activity, which is manifested by symptoms such as sleepiness or sedation. Chronic exposure of both bromoform and dibromochloromethane can cause liver and kidney cancer, as well as heart disease, unconsciousness, or death in high doses.[15] Due to the potential carcinogenicity of these compounds, drinking water regulations across the developed world require regular monitoring of the concentration of these compounds in the distribution systems of municipal water systems. The World Health Organization has stated that the "risks to health from these by-products are extremely small in comparison with the risks associated with inadequate disinfection."