I have come to realize that my decline in health after moving to Prescott, AZ is due to Immune-mediated inflammatory diseases, such as allergies. I have been seeing an allergist for about 9 months, and I have been taking high doses of antihistamines for nearly a year now, with impressive results in improved health, and weight loss of over 50lbs in 1 year.
A resent test showed that I have a total of 2692
Immunoglobulin E. At that time I was tested for 25 common allergens. Among the things that I am allergic to, I am extremely allergic to: cat dander, mountain cedar, American elm, olive tree, cottonwood, Russian thistle, common pigweed, and sheep sorrel.
Immunoglobulin E (IgE) is a type of antibody (or immunoglobulin (Ig) "isotype") that has only been found in mammals. IgE is synthesised by plasma cells. IgE's main function is immunity to parasites such as helminths[2] like Schistosoma mansoni, Trichinella spiralis, and Fasciola hepatica.[3][4][5] IgE is utilized during immune defense against certain protozoan parasites such as Plasmodium falciparum.[6]
IgE also has an essential role in type I hypersensitivity,[7] which manifests in various allergic diseases, such as allergic asthma, most types of sinusitis, allergic rhinitis, food allergies, and specific types of chronic urticaria and atopic dermatitis. IgE also plays a pivotal role in responses to allergens, such as: anaphylactic drugs, bee stings, and antigen preparations used in desensitization immunotherapy.
Variations in the upper limit of normal total serum IgE have been reported: they can range from 150 to 1,000 UI/ml; but the usually accepted upper limit is between 150 and 300 UI/ml.
So, I have 2.5x the upper end of normal total serum IgE, which has led to:
type II diabetes,
COPD and
coronary heart disease.
Type I hypersensitivity (or immediate hypersensitivity) is an allergic reaction provoked by reexposure to a specific type of antigen referred to as an allergen.[1] Type I is not to be confused with type II, type III, or type IV hypersensitivities, nor is it to be confused with Type I Diabetes or Type I of any other disease or reaction.
Exposure may be by ingestion, inhalation, injection, or direct contact.
Pathophysiology
In type 1 hypersensitivity, B-cells are stimulated (by CD4+TH2 cells) to produce IgE antibodies specific to an antigen. The difference between a normal infectious immune response and a type 1 hypersensitivity response is that in type 1 hypersensitivity, the antibody is IgE instead of IgA, IgG, or IgM. During sensitisation, the IgE antibodies bind to FcεRI receptors on the surface of tissue mast cells and blood basophils.[2] Mast cells and basophils coated by IgE antibodies are "sensitized". Later exposure to the same allergen cross-links the bound IgE on sensitized cells, resulting in anaphylactic degranulation, which is the immediate and explosive release of pharmacologically active pre-formed mediators from storage granules and concurrent synthesis of inflammatory lipid mediators from arachidonic acid;[3] some of these mediators include histamine, leukotriene (LTC4 and LTD4), and prostaglandin, which act on proteins (e.g., G-protein coupled receptors) located on surrounding tissues.[3] The principal effects of these products are vasodilation and smooth-muscle contraction.
Type 1 hypersensitivity can be further classified into immediate and late-phase reactions. The immediate hypersensitivity reaction occurs minutes after exposure and includes release of vasoactive amines and lipid mediators, whereas the late-phase reaction occurs 2–4 hours after exposure and includes the release of cytokines.[4]